Mutations for Permutations

- Insert mutation:
- Pick two allele values at random
- Move the second to follow the first, shifting the rest along to accommodate
- Note: this preserves most of the order and adjacency information; changes the position of numbers a lot

Removed Adjancency:
Added Adjacency:
Removed orders:
Added orders:
Changed positions:
$(2,3),(4,5),(5,6)$
$(2,5),(4,6),(5,3)$
3->5, 4->5
5->3, 5->4
$3,4,5$

Mutations for Permutations

- Swap mutation:
- Pick two alleles at random and swap their positions
- Disrupts adjacency information and order more; preserves positions
12 314567819 \longrightarrow 15314267789

Removed Adjancency: Added Adjacency: Removed order:
Added order:
Changed positions:
$(1,2),(2,3),(4,5),(5,6)$
$(1,5),(2,6),(4,2),(5,3)$
2->3, 2->4, 2->5, $3->5,4->5$
$5->3,5->4,3->2,4->2,5->2$
2, 5

Mutations for Permutations

- Inversion mutation:
- Pick two alleles at random and then invert the substring between them.
- Preserves most adjacency information (only breaks two links) but disruptive for order information

$\longrightarrow \quad 15|4| 3|26| 7|8| 9$

Mutations for Permutations

- Scramble mutation:
- Pick a subset of genes at random (not necessarily consecutive)
- Randomly rearrange the alleles in those positions

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{array}
$$

Crossover for Permutations

- Order one crossover:
- Choose an arbitrary part from the first parent, copy this part to the first child

\section*{| 9 | 3 | 7 | 8 | 2 | 6 | 5 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

- Copy the numbers that are not in the first part, to the first child:
- starting right from cut point of the copied part,
- using the order of the second parent and wrapping around at the end

1	2	3	4	5	6

$\longrightarrow \quad 3|8| 2|4| 5|6| 7|1| 9$

9	3	7	8	2	6	5

- Analogous for the second child, with parent roles reversed

Crossover for Permutations

- Partially Mapped Crossover (PMX):
- Choose random segment and copy it from P1

| 9 | 3 | 7 | 8 | 2 | 6 | 5 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{4}$

- Starting from the first crossover point look for elements in that segment of P2 that have not been copied
- For each of these i look in the offspring to see what element j has been copied in its place from P1
- Place i into the position occupied j in P_{2}, since we know that we will not be putting j there (as is already in offspring)
- If the place occupied by j in P_{2} has already been filled in the offspring k , put i in the position occupied by k in P_{2}

Step 2

Crossover for Permutations

- Partially Mapped Crossover (PMX):
- Having dealt with the elements from the crossover segment, the rest of the offspring can be filled from P2.

Step 3	$\mathbf{1}$	2	3	4	5	6	7	8	9

$$
\begin{array}{|l|l|l|l|l|l|l|l|l}
\hline 9 & 3 & 2 & 4 & 5 & 6 & 7 & 1 & 8 \\
\hline
\end{array}
$$

| 9 | 3 | 7 | 8 | 2 | 6 | 5 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

- Idea: maintain position

Order vs Position in

 Permutations- Order, but not position of numbers is important in problems such as the traveling salesman problem (visiting all cities in a certain order)
- Position, but not order of numbers is important in problems such as allocating visitors in hotels to rooms (visitors have to be allocated once to one room, but the order of the allocation does not matter)

Evolutionary Strategies

- Numerical optimization problems:
- Given a function f from real numbers to a real number
- Find coordinates at which f is maximized

Evolutionary Strategies

- Main idea: individuals consist of vectors of real numbers (not binary)
- Redefinitions of
- selection
- crossover
- mutation
- Operations executed in the order crossover \rightarrow mutation \rightarrow selection

ES: Selection

- Not performed before mutation and crossover, but after these operations
- It is assumed mutation (\& crossover) generate
$\lambda>\mu$ individuals (where μ is population size)
(typically $\lambda \approx 7 \mu$)
- Deterministically eliminate worst individuals from
- children only: (μ, λ)-E \rightarrow escapes from local optima more easily
(Notational convention)
- parents and children: $(\mu+\lambda)$-ES \rightarrow doesn't forget good solutions ("elitist selection")

ES: Basic Mutation

- An individual is a vector $\vec{h}=\left(x_{1}, \ldots, x_{n}\right)$
- Mutate each x_{i} by sampling a change from a normal distribution:

$$
x_{i} \leftarrow x_{i}+\Delta x_{i} \text { where } \Delta x_{i} \underset{\sim}{\sim} N(0, \sigma)
$$

Simple modification: mutation rate for each x_{i}

Major question:
How to set σ or σ_{i} ?

MAIN IDEA: make search more efficient by increasing mutation rate if this seems safe

ES: Basic Mutation

- An algorithm for setting global σ Improved fitness
- Count the number G_{s} of succéssful mutations
- Compute the ratio of successful mutations
$p_{s}=G_{s} / G$
- Update strategy parameters according to

$$
\sigma=\left\{\begin{array}{lll}
\sigma_{i} / c & \text { if } & p_{s}>0.2
\end{array} \quad c \in[0.8,1.0]\right.
$$

Basic (1+1) ES

- Common use of the $1 / 5$ rule

```
\(t:=0\);
initialize \(P(0):=\{\vec{x}(0)\} \in I, I=I R^{n}, \vec{x}=\left(x_{1}, \ldots, x_{n}\right)\);
evaluate \(P(0):\{f(\vec{x}(0))\}\)
while not terminate \((P(t))\) do
    mutate: \(\vec{x}^{\prime}(t):=m(\vec{x}(t))\)
        where \(x_{i}^{\prime}:=x_{i}+\sigma(t) \cdot N_{i}(0,1) \forall i \in\{1, \ldots, n\}\)
    evaluate: \(P^{\prime}(t):=\left\{\vec{x}^{\prime}(t)\right\}:\left\{f\left(\vec{x}^{\prime}(t)\right)\right\}\)
    select: \(P(t+1):=s_{(1+1)}\left(P(t) \cup P^{\prime}(t)\right)\);
    \(t:=t+1\);
    if \((t \bmod n=0)\) then
        \(\sigma(t):= \begin{cases}\sigma(t-n) / c & , \text { if } p_{s}>1 / 5 \\ \sigma(t-n) \cdot c & , \text { if } p_{s}<1 / 5 \\ \sigma(t-n) & , \text { if } p_{s}=1 / 5\end{cases}\)
        where \(p_{s}\) is the relative frequency of successful
                mutations, measured over intervals of,
                say, \(10 \cdot n\) trials;
        and \(0.817 \leq c \leq 1\);
    else
        \(\sigma(t):=\sigma(t-1) ;\)
    fi
od
```


ES Mutation:

Strategy Parameters

- An individual is a vector $\vec{h}=\left(x_{1}, \ldots, x_{n}, \sigma\right)$ or $\vec{h}=\left(x_{1}, \ldots, x_{n}, \sigma_{1}, \ldots, \sigma_{n}\right)$ where the σ_{i} are the standard deviations
- Mutate strategy parameter(s) first Order is important!
- If the resulting child has high fitness, it is assumed that:
- quality of phenotype is good
- quality of strategy parameters that led to this phenotype is good

ES Mutation:

Strategy Parameters

- Mutation of one strategy parameter

Here the new $\sigma^{\text {c }}$ is used!

ES Mutation:

Strategy Parameters

- Here τ_{0} is the mutation rate
- τ_{0} bigger: faster but more imprecise
- τ_{0} smaller: slower but more imprecise
- Recommendation for setting τ_{0} :

$$
\tau_{0}=\frac{1}{\sqrt{n}}
$$

[^0]
ES Mutation:

Strategy Parameters

$\bigoplus \quad$ equal probability to place an offspring

- One parameter for each individual
- 2 dimensional genotype
$\vec{h}=\left(x_{1}, x_{2}, \sigma\right)$
- 5 individuals

ES Mutation:

Strategy Parameters

$\bigoplus \quad$ equal probability to place an offspring

- One parameter for each dimension
- 2 dimensional genotype
$\vec{h}=\left(x_{1}, x_{2}, \sigma_{1}, \sigma_{2}\right)$
- 5 individuals

ES Mutation:

Strategy Parameters

- Mutation of all strategy parameters

$$
\begin{aligned}
\sigma_{i}^{\prime} & =\sigma_{i} \cdot \exp \left(\tau^{\prime} \cdot N(0,1)+\tau \cdot N_{i}(0,1)\right) \\
x_{i}^{\prime} & =x_{i}+\sigma_{i}^{\prime} \cdot N_{i}(0,1)
\end{aligned}
$$

Sample from normal distribution, the same for all parameters

Update for this specific parameter

ES Mutation:

Strategy Parameters

$\bigoplus \quad$ equal probability to place an offspring

- An individual is a vector

$$
\begin{aligned}
\vec{h}= & \left(x_{1}, \ldots, x_{n}, \sigma_{1}, \ldots, \sigma_{n}, \alpha_{1}, \ldots, \alpha_{m}\right) \\
& \text { where } \alpha_{i} \text { encode angles }
\end{aligned}
$$

- Also here mutation can be defined
- Mathematical details skipped

ES Crossover / Recombination

- Application of operator creates one child (not two)
- Is applied λ times to create an offspring population of size λ
(on which then mutation and selection is applied)
- Per offspring gene two parent genes are involved
- Choices:
- combination of two parent genes:
- average value of parents (intermediate recombination)
- value of one randomly selected parent (discrete recombination)
- choice of parents:
- a different pair of parents for each gene (global recombination)
- the same pair of parents for all genes

ES Crossover / Recombination

- Default choice: discrete recombination on phenotype, intermediate recombination on strategy parameters

1.2	0.2	-6.7	2.3	0.55	0.905	1.65	11.2
Offspring							
intermediate							

GAs vs. ES

Genetic algorithms

- Crossover is the main operator
- Uses also mutation
- Encoding for problem representation
- Biased selection of the parents
- Algorithm parameters often fixed
- Selection \rightarrow Crossover \rightarrow Mutation

Evolution strategies

- Mutation is the main operator
- Uses also crossover (recombination)
- No encoding needed for problem representation
- Random selection of the parents
- Adaptive set of algorithm parameters (strategy parameters)
- Crossover \rightarrow Mutation \rightarrow Selection

Genetic Programming

- Goal: to learn computer programs from examples (like in machine learning and data mining)
- Main idea: represent (simple) computer programs in individuals of arbitrary size
- Redefinitions of
- selection
- crossover
- mutation

Individuals are Program Trees /

Parse Trees

- Representation of
- Arithmetic formulas

$$
2 \cdot \pi+\left((x+3)-\frac{y}{5+1}\right)
$$

- Logical formulas
- Computer programs

$$
(x \wedge \text { true }) \rightarrow((x \vee y) \vee(z \leftrightarrow(x \wedge y)))
$$

$$
\begin{aligned}
& i=1 ; \\
& \text { while }(i<20) \\
& \left\{\begin{array}{l}
i=i+1 \\
\}
\end{array}\right.
\end{aligned}
$$

Representation of

Arithmetic Formula

Representation of Logical Formula

Representation of

Computer Programs

Representation

- Trees consisting of:
- terminals (leaves)
- constants
- variables (inputs to the program/formula)
- functions of fixed arity (internal nodes)

Considerations in Function Selection

- Closure: any function should be well-defined for all arguments

Example: $\{$ *, / \} is not closed as division is not well defined if the second argument is o \rightarrow redefine $/$.

- Sufficiency: the function and terminal set should be able to represent a desirable solution

Evolutionary Cycle

- Fixed population size
- Create a new population by randomly selecting an operation to apply, each of which adds one or two individuals into the new population, starting from one or two fitness proportionally selected individuals:
- reproduction (copying)
- one of many crossover operations
- one of many mutation operations

Initialization

- Given is a maximum depth on trees $D_{\max }$
- Full method:
- for each level $<D_{\max }$ insert a node with function symbol (recursively add children of appropriate types)
- for level $D_{\max }$ insert a node with a terminal
- Grow method:
- for each level $<D_{\max }$ insert a node with either a terminal or a function symbol (and recursively add children of appropriate types to these nodes)
- for level $D_{\max }$ insert a node with a terminal
- Combined method: half of the population full, the other grown

Mutation

Operator name

Point mutation

Permutation
Hoist

Expansion

Collapse subtree

Subtree mutation

Description

single node exchanged against random node of same class
arguments of a node permuted new individual generated from subtree
terminal exchanged against random subtree
subtree exchanged against random terminal
subtree exchanged against random subtree

Point Mutation

Permutation

Hoist

Expansion Mutation

Collapse Subtree Mutation

Subtree Mutation

Crossover

Self-Crossover

Bloat

- "Survival of the fattest", i.e. the tree sizes in the populations increase over time
- Countermeasures:
- simplification
- penalty for large trees
- hard constraints on the size of trees resulting from operations

Editing Operator

- An operation that simplifies expressions
- Examples:
- X AND X \rightarrow X
- X OR X \rightarrow X
- $\operatorname{NOT(NOT(X))~} \rightarrow \mathrm{X}$
- $\mathrm{X}+\mathrm{o} \rightarrow \mathrm{X}$
- X. $1 \rightarrow \mathrm{X}$
- X. o \rightarrow o
-

Example - Symbolic Regression

 Pythagorean TheoremUnderlying function: $c=\sqrt{a^{2}+b^{2}}$
Negnevitsky 2004

Fitness cases:

Side a	Side b	Hypotenuse c	Side a	Side b	Hypotenuse c
3	5	5.830952	12	10	15.620499
8	14	16.124515	21	6	21.840330
18	2	18.110770	7	4	8.062258
32	11	33.837849	16	24	28.844410
4	3	5.000000	2	9	9.219545

Language elements: $+,-,{ }^{*}, /$, sqrt, a, b

Results

Example - Symbolic Regression Approximation of $\sin (x)$

- Given examples $(\mathrm{x}, \sin (\mathrm{x}))$ with x in $\{0,1, \ldots, 9\}$
- Find a good approximation of $\sin (x)$

Function Sets	Result	Generation	Error (final)
$F_{1}:\{+,-, *, /, \sin \}$	$\sin (x)$	0	0.00
$F_{2}:\{+,-, *, /, \cos \}$	$\cos (x+4.66)$	12	0.40
$F_{3}:\{+,-, *, /\}$	$-0.32 x^{2}+x$	29	1.36

Example - Symbolic Regression Approximation of $\sin (x)$

GAs vs. GP

Genetic algorithms

- Chromosomes represent coded solutions
- Fixed length chromosomes
- A small set of well-defined genetic operators
- Conceptually simple

Genetic programming

- Chromosomes represent executable code
- Variable length chromosomes
- More complex genetic operators required
- Conceptually complex

[^0]: *H.-P. Schwefel: Evolution and Optimum Seeking, Wiley, NY, 1995.

